

MingYu Zhao

Email: zhao.mingyu@rutgers.edu | Tel: 732-207-3192

EDUCATION

Rutgers University, Graduate School of Arts and Sciences

Ph.D. in Computer Science

New Brunswick, NJ

Expected May 2029

University of Science and Technology of China

B.Eng. in Artificial Intelligence

Hefei, China

Jun 2024

PUBLICATIONS

“*” denotes equal contribution.

First-author Publications

- Y. Zhou*, **Mingyu Zhao***, Z. Wang, D. Gu, B. Guo, R. Ye, L. Han, C. Jin, D. N. Metaxas. “M3-Bench: Multi-Modal, Multi-Hop, Multi-Threaded Tool-Using MLLM Agent Benchmark.” Submitted to the *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2026.
- **Mingyu Zhao**, Z. Yang, Y. Zhou, Z. Xia, C. Jin, X. He, C. Neidle, D. N. Metaxas. “MHB: Multimodal Handshape-aware Boundary Detection for Continuous Sign Language Recognition.” Funded by the U.S. National Science Foundation (NSF).
- Z. Li*, **Mingyu Zhao***, X. Dong, H. Ling, B. Huang. “CAPAA: Classifier-Agnostic Projector-Based Adversarial Attack.” Accepted by the *IEEE International Conference on Multimedia and Expo (ICME)*, 2025.

Other Publications

- C. Jin, Y. Li, **Mingyu Zhao**, S. Zhao, Z. Wang, X. He, L. Han, T. Che, D. N. Metaxas. “Lor-VP: Low-rank Visual Prompting for Efficient Vision Model Adaptation.” *International Conference on Learning Representations*, 2025.
- S. Zhang, X. He, D. Liu, Z. Xia, **Mingyu Zhao**, C. Tan, V. Li, B. Liu, D. N. Metaxas, *et al.* “Large Sign Language Models: Toward 3D American Sign Language Translation.” *IEEE/CVF Winter Conference on Applications of Computer Vision*, 2026.

RESEARCH EXPERIENCE

Topic: Multi-Modal, Multi-Hop, Multi-Threaded MLLM Agent Benchmark Aug. 2025 ~ Nov. 2025

Instructor: Prof. **Dimitris N. Metaxas** (Rutgers University)

Goal: Design a **multimodal** benchmark for evaluating **MLLM** tool use under the Model Context Protocol (**MCP**), covering realistic multi-hop and multi-threaded workflows with auditable alignment and interpretable evaluation.

- Designed the benchmark task suite and standardized trajectories for multimodal MCP workflows (visual grounding, cross-tool dependencies, and persistent intermediate resources across steps), supported by an Executor & Judge pipeline with optional lightweight human verification.
- Built an end-to-end evaluation pipeline for **MLLM training/inference** settings with MCP tool integration, enabling controlled assessments across tasks, budgets, and error types to characterize failure modes in realistic tool-use workflows.
- Proposed a structure-aware metric suite with similarity-driven tool-call alignment: embed tool-call signatures with a **sentence encoder** and apply **similarity-bucketed Hungarian matching** to obtain auditable one-to-one correspondences, decoupling semantic fidelity from workflow consistency.

Topic: Multi-Modal Video Temporal Boundary Detection Nov. 2024 ~ Jul. 2025

Instructor: Prof. **Dimitris N. Metaxas** (Rutgers University) and Prof. **Carol Neidle** (Boston University)

Goal: Improve **temporal boundary detection** for human-action videos via **multimodal** fusion of skeletal features and handshape cues (evaluated on sign language video datasets).

- Designed a spatio-temporal convolution-based segmentation module with velocity and acceleration features from skeleton sequences, improving robustness around sign boundaries.
- Integrated handshape information by pretraining a handshape classifier over canonical categories and fusing its features into the segmentation stream via cross-attention with a gating mechanism to enhance boundary localization.
- Built an end-to-end Continuous Sign Language recognition pipeline by combining the boundary detector with a recognition model and pre-segmented continuous signs, and validated effectiveness through experiments and ablations.

Topic: CAPAA: Classifier-Agnostic Projector-Based Adversarial Attack June. 2024 ~ Oct. 2024

Instructor: Prof. **HaiBin Ling** (Stony Brook University) and Prof. **BingYao Huang** (Southwest University)

Goal: Achieve classifier-agnostic and **pose-agnostic projector-based** adversarial attacks.

- Proposed an algorithm that focuses the adversarial perturbations on the physical adversarial samples themselves, so as to cope with the effects of changing camera poses.
- Designed a novel optimal loss function to generate adversarial attacks against multiple classifiers.
- Validated the effectiveness of the proposed CAPAA by building a camera-projector system in the real world and by evaluating the attack success rate and stealthiness on 10 sets of ablation experiments.

TECHNICAL STRENGTHS

Skills: Python, C/C++, Bash, MATLAB, Node.js, PyTorch, TensorFlow, Git, Vercel, Flask, Slurm, Linux, L^AT_EX.